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The coronavirus disease 2019 (COVID-19) pandemic is hetero-
geneous throughout Africa and threatening millions of lives.
Surveillance and short-term modeling forecasts are critical to pro-
vide timely information for decisions on control strategies. We
created a strategy that helps predict the country-level case occur-
rences based on cases within or external to a country throughout
the entire African continent, parameterized by socioeconomic and
geoeconomic variations and the lagged effects of social policy
and meteorological history. We observed the effect of the Human
Development Index, containment policies, testing capacity, spe-
cific humidity, temperature, and landlocked status of countries on
the local within-country and external between-country transmis-
sion. One-week forecasts of case numbers from the model were
driven by the quality of the reported data. Seeking equitable
behavioral and social interventions, balanced with coordinated
country-specific strategies in infection suppression, should be a
continental priority to control the COVID-19 pandemic in Africa.

COVID-19 modeling | forecast | Africa | meteorology |
Human Development Index

The ongoing coronavirus disease 2019 (COVID-19) pandemic
in Africa is threatening millions of lives, a crisis compounded

by the continent’s unique spectrum of disease and fragile health-
care infrastructure (1). Essential to African countries’ efforts to
control the pandemic are effective methods to track and predict
new cases and their sources in real time. Time-critical interpreta-
tion of daily case data is required to inform public health policy
on mitigation strategies and resource allocation. To address this
need, we developed a data-driven disease surveillance frame-
work to track and predict country-level case incidence from
internal and external sources. We chose a spatiotemporal strat-
egy to take advantage of and combine openly available data on
coronavirus epidemiology, social policy affecting human move-
ment and public health, meteorological factors, and socioeco-
nomic and demographic variables, seeking to inform rapid policy
development.

The first COVID-19 case on the continent was reported in
Egypt on February 14, 2020. By August 13, 2020, over 1 mil-
lion new cases and over 20,000 deaths had been reported in all
African Union (AU) Member States, according to the Africa
Centres for Disease Control and Prevention (https://africacdc.
org/covid-19/). Over 44 million cases and 190,000 deaths in
Africa are projected within the first year of the pandemic (2).
Although Africa has a younger age distribution that could the-
oretically lead to fewer symptomatic or severe infections (3),
modeling predicts that the relatively low healthcare capacity in
many parts of Africa, in combination with the large, intergenera-

tional households (4), could lead to infection fatality rates higher
than those seen in high-income countries (1). In addition, the
high prevalence of comorbidities such as HIV/AIDS is predicted
to lead to increased risk of severe COVID-19 in infected individ-
uals (5). Moreover, the coexistence of infectious diseases such
as malaria (6), tuberculosis (7), dengue (8), Ebola (9), and oth-
ers (10) poses additional significant medical and infrastructure
challenges in controlling the COVID-19 epidemic in Africa.

Meteorological variables have been linked to the transmission
of and survival from seasonal influenza (11–14), severe acute
respiratory syndrome coronavirus (SARS-CoV) (15–17), and
Middle East respiratory syndrome coronavirus (MERS-CoV)
(18, 19). It is therefore unsurprising that there are many recent
studies exploring the link between temperature, humidity, and
COVID-19. All studies to date have focused on modeling, or
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on a country-by-country basis. This framework improves the
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control the COVID-19 pandemic in Africa.
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on identifying a statistical link between meteorological variables
against reported COVID-19 cases, without laboratory studies.
A recent systematic review reports agreement among published
research, with cold and dry conditions contributing to COVID-
19 transmission (20). However, these results must be considered
preliminary. Early studies of COVID-19 transmission focused
on the emerging pandemic during the boreal spring of 2020
(March through May), when the majority of cases were found
in China, the United States, and Europe. It is difficult, there-
fore, to extrapolate meteorological results to the very different
climates found in the tropics, for example, from the subsequent
outbreaks in India and Brazil. Many low- and middle-income
countries, as defined by the World Bank, are located in the trop-
ics, where many potential confounding factors could mimic a
weather signal. These factors include median age, testing and
health capabilities, population density, access to sanitation, and
the number of new cases arriving in a country through global
travel hubs (21). It is also difficult to extract seasonality from a
single outbreak that has only lasted a single full year, and consid-
erable caution has been raised regarding tropical caseload and
confounding factors (22).

The human response to the pandemic can also drastically
shape its timing and intensity. Where data on social distanc-
ing are sparse, government testing and stringency policies (see
Materials and Methods) can be used as a common surrogate to
compare countries’ efforts to contain the spread of the virus,
bolster healthcare systems, enact rigorous testing policy, and pro-
vide economic support. The Oxford Coronavirus Government
Tracker (OxCGRT) standardizes these complex systems into a
set of policy metrics in each of these domains (23). More strict
social policies identified in the OxCGRT have been associated
with reductions in human mobility (24, 25). Across 161 countries,
some of these policies were significantly associated with lower
per capita mortality (26), including school closing, canceling pub-
lic events, and restrictions on gatherings and international travel.
Likewise, others have found that strict policies are negatively
associated with the growth of new cases (27–29). The relation-
ship between policy and observed changes in social distancing,
case numbers, and mortality is complicated by an unknown delay
of effect. One estimate indicates a decline in growth of new
cases within 1 wk of enacting strict policy, and deceleration of
growth within 2 wk (29). Although the implementation of con-
tainment policies can be and has been used by many African
nations (30), lockdown cannot be maintained in these coun-
tries without a worsening of severe poverty and resultant loss
of life (31, 32).

We have therefore developed a COVID-19 surveillance, mod-
eling, and prediction strategy that explores a growing spatiotem-
poral database on coronavirus epidemiology, meteorology, and
social policy interventions. To model the spread of COVID-19
in Africa, we employ a data-driven endemic–epidemic model
(33) to 1) visualize the burden of cases, including the pro-
portion of cases arising from sources local within country and
external between country, 2)describe the factors which most cor-
relate with spread, and 3) enable short-term forecasting of new
cases. This modeling framework has been used previously to fit
space–time dynamics of COVID-19 in Italy (34), Germany (35),
and the United Kingdom (36) and to analyze other infectious
diseases (37).

Results
COVID-19 Spread and Response. As of August 13, 2020, the 55 AU
Member States had reported over 1,000,000 cases and 20,000
deaths from COVID-19. The southern region had the most
cases, reporting over 50% (over 560,000 cases and 11,000 deaths)
of the total for the continent. North Africa carries the high-
est regional case fatality rate (4%) but contributes 20% of the
continent’s cases, with countries such as Egypt (102 cases per

100,000), Morocco (94 cases per 100,000), and Algeria (83 cases
per 100,000) driving the overall numbers (Fig. 1). As more
countries conduct targeted mass screening and testing, these fig-
ures continue to change. The spatial distribution of cases per
100,000 displays no clear geographical pattern (Fig. 1). South
Africa, Djibouti, Equatorial Guinea, Gabon, and Egypt carry the
largest burden of cases per capita, ranging from 100 to 500 per
100,000. The epidemiological curves for the African countries
display varying shapes, mostly driven by the frequency and inten-
sity of testing. For example, the epidemiological curve of South
Africa is similar to those of the United Kingdom and the United
States (SI Appendix, Fig. S1). An exception is Tanzania, which
stopped reporting new cases in late April of 2020 (SI Appendix,
Fig. S1).

Time series for case incidence and temporally varying model
inputs are shown for selected countries in Fig. 1A. The full
set of case incidence time series for all countries can be
found in SI Appendix, Fig. S1. A majority of the countries
imposed containment policies, including lockdowns and cur-
fews, in early March 2020 to prevent further COVID-19 trans-
mission within their borders. These social policy interventions
remained in effect through August 2020 for most countries (SI
Appendix, Fig. S2). Testing policies, which were restrictive at
the beginning of the pandemic due to inadequate testing infras-
tructure, have become more open as testing is made widely
available (SI Appendix, Fig. S3). As expected, spatiotempo-
ral distribution of temperatures, rainfall, and specific humid-
ity are very heterogeneous across the continent (Fig. 1 and
SI Appendix, Figs. S4–S6). Population-weighted averages of these
three meteorological variables were calculated for each country
and day. This type of weighting prioritizes the human–climate
interaction over the land–climate interaction (SI Appendix,
Figs. S7–S9).

Optimal Model. The spatiotemporal dynamics of reported cases
are modeled as additive components. Two epidemic sources cap-
ture infections coming from within the country and from all
other countries. An endemic component includes all contribu-
tions to the reported number of cases that are not taken into
account by the epidemic part. The endemic part is not driven by
previous case counts but may account for factors such as sea-
sonality, sociodemography, animal reservoirs, and population.
The epidemic part of the model has an autoregressive nature,
meaning that the past number of COVID-19 cases reported both
within a specific country and in the rest of the continent will
be used to forecast the trend of COVID-19 cases. How much
the past observations contribute to the future disease count
depends on two parameters, λ for the local transmission and
φ for the external transmission, and will be estimated from the
data. In particular, the impact of cases reported in the neigh-
boring countries depends also on a set of weights that modulate
the spatial connectivity of the countries in the continent (see
Materials and Methods). These two parameters are also func-
tions of social policy, testing availability, and meteorological
and demographic factors whose association with transmission we
aim to determine. The model specification reported in Eqs. 3–5
representing the endemic, within-, and between-country com-
ponent of the model, respectively, is the result of a model
selection procedure based on the Akaike Information Criterion
(AIC) (38). A summary of model comparison and selection pro-
cess is presented in SI Appendix, Table S1. We began with an
intercept-only model (model 1) with a population offset in the
endemic component of the model and country’s measure of con-
nectivity based on a power law. More complicated versions of
the epidemic component were evaluated by sequentially adding
weather, demographic, stringency index, and testing policy in the
formula for the within- (λ) and between-country (φ) components
of the model. We also tested whether multiple lags for cases and
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Fig. 1. Temporal distribution of reported cases, stringency index, testing policy, and weather factors. (A) Time series (February to August 2020) of (from
top to bottom) daily reported cases per 100,000, stringency index, testing policy, temperature, rainfall, and specific humidity for representative countries
Egypt, Senegal, South Africa, and Uganda. These time-dependent covariates were used as predictors (explanatory variables) in the best-fitting model shown
in Table 1. The gray and orange shaded areas show the time window of data used to fit the model and the data held out for model validation, respectively.
(B) Country-specific distribution of cumulative cases per 100,000 on August 13, 2020.

covariates better described the observed patterns: considering
lags d = 1, . . ., D, where D = 14 days. Exploration of the higher-
order model with Poisson and geometric lag weights revealed
that, relative to the first-order model, the largest improvement in
AIC (∆AIC = −1,560) was achieved with a model with D = 7 for
all variables (SI Appendix, Fig. S10). Therefore, the model with
lag 7 d for cases, testing policy, stringency index including Human
Development Index (HDI), landlocked status, and population
in the between-country component, and with meteorology fac-
tors, HDI, landlocked status, stringency index, and testing policy
in the within-country component, yielded the lowest AIC (from
48,824 in model 1 to 48,437 in model 5 without random effects;
SI Appendix, Table S1).

Due to the high spatiotemporal heterogeneity of reported
cases across Africa and to better capture country-specific trans-
mission dynamics and incidence levels not explained by observed
covariates, we allowed the intercept (mean levels of λ and φ)
in the local (4) and neighbor-driven (5) sources of infections
to vary for each country as random effects. The relative risks
for each explanatory variable included in this final model and
the associated 95% CIs are reported in Table 1. Landlocked
status, stringency index, and testing policy were significant con-
tributing factors for the local transmission of cases. SI Appendix,
Fig. S11 shows the actual contribution of the time-constant and
time-varying covariates to the transmission parameters.

In addition, higher lagged mean temperature was a positive
contributing factor, but higher specific humidity had a negative
effect on the transmission of cases. For example, a 1 SD increase
in the lagged mean temperature results in 11% higher contribu-
tion to the within-country transmission (P = 0.023, relative risk

[RR] 1.11, 95% CI 1.01 to 1.21). However, a 1 SD increase in
the 7-d lag mean specific humidity resulted in a 14% lower con-
tribution on the local transmission of cases (P = 0.001, RR 0.86,
95% CI 0.78 to 0.94). Greater accessibility of testing remained
the only significant contributing factor explaining the numbers of
cases from the neighboring countries. With each level increase in
the openness of the testing policy from zero to four, the contri-
bution to the transmission of cases from neighboring countries
was higher by twofold (P < 0.0001). The overdispersion param-
eter decreased from the fixed effects model (1.95, 95% CI 1.87
to 2.03) to random effects model (1.70, 95% CI 1.63 to 1.78) as
a sign that the random effects absorbed part of the unexplained
variability between countries.

Fig. 2 shows country-specific random effects, which we used
to capture unexplained contributions to transmission. A value
higher (lower) than one means that a country has an average
transmission rate that is higher (lower) than the rest of the
continent. This may be interpreted as a country-specific propen-
sity to generate more or fewer cases given the past number of
reported infected individuals. With respect to the within-country
contributions to transmission, South Africa and Djibouti are
the only African countries with an effect significantly higher
than one. On the other hand, the Republic of Congo is the
only country with a within-country transmission rate signifi-
cantly lower than the continental-level mean. With respect to the
between-country contributions to transmission of cases, Benin,
Cameroon, Central African Republic, Ethiopia, Gabon, Ghana,
Guinea, Malawi, Republic of Congo, and Senegal had signif-
icantly higher rates of between-country transmission than the
continental-level mean. Angola, Chad, Lesotho, Namibia, and
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Table 1. Maximum likelihood estimates and corresponding 95%
CIs for a model with a 7-d lag

Final model

Parameter Relative risk 95% CI P value

Endemic
Intercept 11.071 (7.150, 17.142) —

Within-country
Intercept 0.958 (0.550, 1.669) —
log(population) 1.036 (0.956, 1.123) 0.391
HDI 0.957 (0.819, 1.118) 0.580
Landlocked 0.674 (0.531, 0.857) 0.001
Stringencyt−7 1.872 (1.170, 3.000) 0.008
Testingt−7 0.817 (0.729, 0.918) 0.001
Raint−7 1.045 (0.981, 1.112) 0.175
Temperaturet−7 1.106 (1.014, 1.206) 0.023
Humidityt−7 0.856 (0.780, 0.940) 0.001

Between-country
Intercept 0.045 (0.004, 0.481) —
log(population) 1.428 (0.923, 2.210) 0.110
HDI 1.239 (0.584, 2.628) 0.576
Landlocked 0.844 (0.306, 2.323) 0.742
Stringencyt−7 1.630 (0.560, 4.749) 0.380
Testingt−7 2.322 (1.676, 3.218) <0.0001

ρ 2.186 (1.532, 2.839) —
ψ 1.703 (1.631, 1.775) —

For climatic variables, a 1 SD increase in climatic variables results in the
shown relative risk. For stringency index, a 10% increase in stringency is
associated with the increased relative risk shown. HDI and testing policy are
on ordinal scales zero to three (HDI) and zero to four (testing policy). Bolded
estimates are statistically significant. The spatial weight decay, ρ, reflects
the strength of intercountry connectivity, and ψ, reflects the overdispersion
parameter.

Tanzania had lower between-country transmission rates com-
pared to the continental-level mean. The estimated variation of
these country-specific effects in the within-country component of
the model is small (σ̂2

λ = 0.07) compared with their variation in
the neighborhood component (σ̂2

φ = 2.3). Although the between-
country variability of transmission resulting from cases reported
outside of the country was larger, the between-country intercept
(Table 1) is very small, and so the neighborhood component is,
in general, a small contributor to the fit.

Contributions of Within- and Between-Country Transmission. We
distinguish between endemic, within-country, and between-
country contributions to the mean number of cases. Fitted
values for all components according to model formulations
in Eq. 1 are shown in Fig. 3, with a complete listing in SI
Appendix, Fig. S12. The number of cases attributed to within- and
between-country transmission of cases during the entire study
period varied greatly. Across countries, the contribution from
the endemic component was found to be minimal. Of the 46
countries analyzed, 16 of them are landlocked, and 13 (81%) of
these had a substantial contribution of cases from their neighbor-
ing countries: Botswana, Burkina Faso, Burundi, Central African
Republic, Ethiopia, Lesotho, Malawi, Rwanda, South Sudan,
Swaziland, Uganda, Zambia, and Zimbabwe.

Short-Term Forecast. We keep the last 7 d of data out of the
fitting procedure in order to use them as a forecast validation
dataset. We produce 1-wk-ahead predictions and compare them
with the reported data to check the quality of the model fore-
cast. The results show that the majority of individual country

case count data are captured well within model prediction inter-
vals (Fig. 4 and SI Appendix, Fig. S13). Across countries, the
model predictive performance was assessed with a calibration
test based on proper scoring rules as described in ref. 39. A map
of P values for the calibration test is shown in SI Appendix, Fig.
S14. Overall, model predictions are well calibrated, and a mis-
alignment between forecast and observations was only detected
for a few countries (p< 0.05, Burundi, Cameroon, Somalia, and
Botswana).

Discussion
We present a COVID-19 surveillance strategy that can improve
the ability of African countries to interpret the complex data
available to them during the pandemic. This approach balances
the simplicity and consequent robustness of an empirical model
against the more complex, potentially more realistic but also
more strongly assumption-driven kind of compartmental mech-
anistic model (40). A key feature of our approach is the ability
to distinguish between case incidence arising from the local
within- or neighbor-driven transmission of infection. Distinguish-
ing within- and between-country transmission of cases allows
us to identify potential strategies for social or health policy
intervention. The model further enables reproducing the his-
tory of the epidemic in relationship to past policy, and producing
short-term predictions of the dynamic evolution of the epidemic.
Due to evolving global policy, complex weather phenomena,
and changes to social behavior, these factors will change their
relationship to COVID-19 prediction as the pandemic evolves.

We find that a country’s testing capacity, social policy, land-
locked status, temperature, and humidity are important con-
tributing factors explaining the within- and between-country
transmission of cases over the window of analysis. The availabil-
ity of more testing to a wider swath of the populace is a potent
contributor to reduced case transmission within country, while
having the opposite effect on case transmission from neighboring
countries. Testing policy, another surrogate for healthcare capa-
bility and preparedness to handle the pandemic, demonstrates
this unique opposing effect on the two model components. Coun-
tries in northern and southern Africa that have relatively high
HDI demonstrated comparatively higher numbers of cases per
population. On the other hand, even in the face of border clo-
sures, landlocked countries depend on open borders for trade.
For such countries, strict border closure measures are diffi-
cult to impose, resulting in a continual influx of cases from the
neighboring countries.

The observed association of temperature and specific humidity
with the case numbers, although small, points to the possible bio-
logical and behavioral responses to weather patterns, which, in
turn, drive the dynamics of SARS-CoV-2 infection. Temperature
and humidity are known factors in SARS-CoV, MERS-CoV,
and influenza virus survival (41–43). Lower humidity has been
consistently associated with a higher number of cases. Besides
potentially prolonging half-life and viability of the virus, other
potential mechanisms associated with low humidity include sta-
bilization of the aerosol droplet, enhanced propagation in nasal
mucosa, and impaired localized innate immunity (44). Whether
the observed association is driven by the change in social behav-
ioral patterns or the effect on the survival of SARS-CoV-2
remains to be explored (45). It is also possible that the observed
contribution of meteorological factors to case transmission might
be an artifact of spatial averaging and assigning one meteorolog-
ical value to an entire country. It will be important to explore
such associations in more detail before any policy-relevant con-
clusions can be drawn. Thus, at present, policy makers must focus
on social–behavioral interventions such as reducing physical
contact within communities and vaccination, while COVID-19
risk predictions based on climate information alone should be
interpreted with caution (46).
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Fig. 2. Random effects for the local and neighbor components of the model. Country-specific RR and their 95% CI for (A and C) within-country and (B and
D) between-country model contributions. The dashed blue line in the forest plots represents continent-level average. RR greater than one indicates higher
propensity for transmission as compared to the rest of the continent.

Our infection surveillance tool adds to the public health
capacity already in place on the continent to better understand
transmission patterns between and within African countries.
Containment and mitigation strategies to limit the spread of

the virus, including restrictions on movement, public gather-
ings, and schools, were implemented very early in the pan-
demic. In a resource-limited setting such as Africa, contain-
ment and mitigation strategies remain the most robust defense
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BA

Fig. 3. Contributions of new cases from endemic, within-country, and between-country model components. (A) Black dots and connecting lines are the
observations, and shaded colors are the model predictions, from the three contributing components of the model. (B) The relative contribution of new cases
from within-country sources, by country. Contribution plots for all countries are given in SI Appendix, Fig. S12.

against high infection rates and mortality until effective vac-
cines are widely available. However, it is anticipated that physical
distancing measures enforced to limit transmission will also
restrict access to essential non–COVID-19 healthcare services,
such as disruptions in the existing programs for tuberculosis,
HIV/AIDS, malaria, and vaccine-preventable diseases, causing
long-lasting collateral damage on the continent (32). Although
between 29 million to 44 million individuals (2) in Africa were
projected to become infected in the first year of the pandemic
if containment measures fail, these numbers may be under-
estimates, since the proportion of asymptomatic infections is
not well established. Since detection is biased toward clinically
severe disease, the attack rate of the infection is probably sub-
stantially higher than what is reported. At the beginning of
the pandemic, it was estimated that up to 86% of all infec-
tions were undocumented and were the source of 79% of the
documented cases (47). Such observations explain the rapid geo-
graphic spread of the infections and challenging efforts at con-
tainment. The number of asymptomatic cases is best determined
by population-based seroepidemiology data. However, due to
the fragile healthcare systems of African countries, this type of
disease surveillance remains limited. On the other hand, it is also
plausible that the lower incidence rate of the virus in Africa is
because of the investment in preparedness and response efforts
toward various outbreaks on the continent (such as Ebola virus
disease, Lassa fever, polio, measles, tuberculosis, and HIV) (32).
This technical know-how has been swiftly adapted to COVID-19.

An additional strength of our modeling strategy is the abil-
ity to incorporate the disease-specific serial interval between
sequential infections in the autoregressive model. We attempted
to mimic the longer (greater than 1 d) serial interval (48, 49),

infectiousness (48, 50), and latency (48) of COVID-19 transmis-
sion, by extending the observational interval of the infectious
process to several days. The Poisson autoregressive weighting
method used in our modeling strategy also captures an initial
increase in infectiousness and may thus be more appropriate for
longer serial intervals or daily data. In their recent work, Bracher
and Held (51) show that moving beyond 1-d lags to higher-order
time lags improves predictive performance of these endemic–
epidemic models. For our optimization scheme, we tested lags
up to 14 d, and found that a lag at 7 d provided the best model
fit. Short-term predictions enable the monitoring of case inci-
dence trends but are limited by high levels of uncertainty. This
is the result of the nonnegligible overdispersion detected in the
data and due to the several sources of unmodeled spatial and
temporal heterogeneity across the continent.

Limitations. A number of assumptions in our analysis reflect
practical limitations. We used aggregated data at the coun-
try level to ensure continental coverage, but fitting this model
at different spatial scales would require reformulation of the
neighborhood structure and the model parameters. It is difficult
to obtain accurate mobility data within and between countries
throughout Africa, necessitating an indirect estimation of con-
tact probabilities. Although our use of higher-order neighbor-
hood (beyond sharing a border) contact patterns led to improved
model fit compared to an assumption of first-order neighbors
(bordering countries) only, more-accurate mobility data would
improve these estimations. Because ground truth data on within-
country vs. imported cases are not available, we cannot validate
case origins in our model fits. Other assumptions related to
the testing and stringency policies are coarse approximations of
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Fig. 4. Retrospective and forecast model fit for selected countries. Retrospective model fit (blue shade) and forecast (orange shade). The 50% and 95% CIs
are represented by dark and light colors, respectively. Filled circles in the blue shade are observed cases, and the solid blue line is the predicted retrospective
mean. Open circles in the orange shaded area represent cases during model forecast, and the solid orange line is the predicted forecast case mean. The
majority of individual country case count data are captured well within model prediction intervals. For the full list of countries, see SI Appendix, Fig. S13.

governmental response to the surveillance and control of dis-
ease transmission. The absence of quantifiable tests per capita
limits all such approaches. We excluded Equatorial Guinea,
Guinea-Bissau, and Western Sahara, due to missing strin-
gency index, and excluded the six island nations (Madagascar,
Comoros, Mauritius, Seychelles, Cape Verde, São Tomé, and
Pŕıncipe), due to the lack of connectivity to mainland Africa
which prevented model convergence.

SARS-CoV-2 is often carried by otherwise healthy-appearing
individuals who unknowingly transmit the pathogen. In the
present analysis, we could not disentangle asymptomatic and
symptomatic disease. Underreporting can introduce artifacts in
the autocorrelation structure and may confound the estimation
of lag weights of the underlying serial interval distribution (52).

Additionally, we assumed that model coefficients were con-
stant over time. This represents a trade-off of sufficient data
required for stable model fitting versus the need to embrace
the nonstationarity of the evolving pandemic. The empirical
model approach we employed depends only on case data and
therefore does not change as infectivity changes with viral
variants, reinfection, and vaccination. We further ignored sea-
sonal variation, implying that the interaction with weather is
the same in summer and winter, or rainy and dry seasons
closer to the equator. As the pandemic extends beyond the
first year, introducing additional covariates to the endemic term,
such as seasonal oscillations or animal reservoirs, may improve
model fit.

This modeling strategy is limited by the quality of the data and
the lack of nonlinear dynamics in the model. As effective vac-
cines become more widely available within Africa, modification
of this model framework, and validation against observations and
predictions, will become important to consider. Our modeling
strategy enables us to focus on any window of time during an
epidemic to examine the contributing properties. As the African
pandemic and policies evolve, and as the variants of the virus
introduce changes in infectivity, this model should be refit for
later time periods to establish the changing relationships that
best account for the epidemic dynamics within and between

countries. Our archived open-source code enables others to refit
for any past or future time window of interest.

Conclusions. We present a pan-African COVID-19 surveillance
tool to track and perform short-term forecast of COVID-19
cases and to quantify between- and within-country sources.
Our analyses give insight into the sociodemographic, geode-
mographic, testing, mitigation/containment, and meteorological
factors that influence the spread of the SARS-CoV-2 infection at
the national scale. Although our strategy can be used for short-
term predictions of cases, its accuracy is dependent upon the
quality of testing and reported data. In settings with fragile health
systems, coupled with the vulnerability of lower-HDI economies,
the capacity to effectively track the pandemic is especially chal-
lenging. Such challenges point to the potential advantages in
regional efforts to coordinate resources to test and report cases.
Seeking equitable behavioral and social interventions, balanced
with coordinated country-specific strategies in infection suppres-
sion, should be a continental priority to control the COVID-19
pandemic in Africa.

Materials and Methods
Overview. Our analyses included 46 countries of mainland Africa. We do
not provide estimates for Equatorial Guinea, Guinea-Bissau, and Western
Sahara, due to the missing data on stringency index, or the six island
nations (Madagascar, Comoros, Mauritius, Seychelles, Cape Verde, São
Tomé, and Prı́ncipe), due to the lack of spatial connectivity. Modeling the
spread of COVID-19 over the African continent poses challenges, given
the extensive cultural, political, and environmental heterogeneity between
countries. Indeed, this heterogeneity results in substantial variability of
reported case counts across countries. It is this variability in case counts
that motivates our choice of a relatively simple data-driven autoregressive
modeling approach. Such a modeling approach focuses on the interac-
tion of cases reported in time and space without hidden variables to be
estimated.

Meteorology/Weather Factors. The seasonality of influenza transmission has
been associated with cycles of temperature, rainfall, and specific humidity,
although, in different regions of the world, transmission may peak during
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the “cold-dry” season (temperate climates) or during “humid-rainy” season
(tropical climates) (53).

We estimated the influence of meteorological factors on the transmission
dynamics of COVID-19 in Africa. Real-time, daily, in situ synoptic weather
observations are sparse across much of Africa. Therefore, daily, 10-km spa-
tial resolution mean temperature, rainfall, and specific humidity data were
obtained from UK Met-Office numerical weather prediction model output
(54, 55). These data are extracted from the early time steps of the model
following data assimilation, to more closely approximate an observational
dataset. This approach also has the advantage that future studies have
access to the same coherent dataset at a global scale for applications out-
side of continental Africa. The weather product that generates these data
closely approximates an observational dataset at locations that have dense
observation coverage, whereas, in observation-sparse areas, the dataset
relies more heavily upon the numerical weather prediction model (a physics-
based rather than statistical model). The meteorological dataset contained
no missing data.

A population density-weighted spatial average (SI Appendix, Figs. S7–S9)
was then applied for each day and country using the R package “exactex-
tractr” (56). Population density was obtained from the Gridded Population
of the World version 4 (GPWv4) from the Centre for International Earth Sci-
ence Information Network (57). Weighting climate variables by population
gives a closer approximation to the weather conditions faced by humans
living in that country compared to an unweighted average over total land
area. For example, the country of Algeria, in which much of the popula-
tion resides along the coast, demonstrates a cooler, wetter, and more humid
climate when weighting by population (SI Appendix, Figs. S7E, S8E, and S9E).

Stringency Index and Testing Policy. To include an aggregate measure of
countries’ social policies, the stringency index sourced from the OxCGRT
dataset was used. This composite measure reflects government policies
related to school and workplace closures, restrictions on public gatherings,
events, public transportation, limitations of local and global travel, stay-
at-home orders, and public education campaigns (23). A full description of
these variables is provided in SI Appendix, Table S2. The stringency index is
calculated from these categorical variables using a weighted average, with
a range of 0 to 100 indicating weak to strict stringency measures, respec-
tively. A time-dependent metric of testing policy was also extracted from
this dataset. Ranging from zero to four, this categorical metric increases
with more open and comprehensive testing policy.

HDI, Demography, United Nations Geographic Regions, and Coastline Access.
In our modeling strategy, we incorporate key socioeconomic and sociode-
mographic epidemiological data, including HDI, population, United Nations
geographic regions, and coastline access (SI Appendix, Fig. S15). HDI repre-
sents the national data on key aspects of development, namely, education,
economy, and health (58). The HDI is the geometric mean of normalized
indices for each of the three dimensions. The education dimension is mea-
sured by average years of schooling for adults aged 25 y and more and
expected years of schooling for children of school-entering age. The econ-
omy dimension is measured by gross national income per capita, and the
health dimension is assessed by life expectancy at birth. In Africa, the major-
ity of the countries fall in the low-HDI category (SI Appendix, Fig. S15).
The northern part of Africa and South Africa have a considerably higher
HDI compared to the rest of the continent. Country-specific median age
was correlated with HDI (Pearson’s correlation coefficient R = 0.71, P <

0.0001; SI Appendix, Fig. S16); therefore, we excluded this covariate from
the model. We include in the model the 2020 population obtained from
the Population Division of the Department of Economic and Social Affairs
of the United Nations Secretariat (59). The categorization of sub-Saharan
and northern Africa was based on the United Nations geoscheme for Africa
(60). This regional factor captures the human genetics (61), environment
and climate (62), and sociocultural and sociodemographic variations of the
African population (63). Finally, lack of direct access to the coastline may
influence the flow of infections from neighboring countries, as border trade
remains an essential operation. For example, Uganda introduced border clo-
sures and tighter preventive measures on truck drivers’ movements during
the epidemic; despite this, a substantial number of new infections have been
imported from truck drivers crossing the border for trade (64). Such cross-
border commerce remains a crucial part of the supply chain for landlocked
African countries such as Uganda and Rwanda.

Model Formulation. We chose a class of multivariate time series models for
case count data introduced by Held et al. (65), and further extended by
Bracher and Held (51) with the addition of higher-order distributed lags.

Conditional on past observations Yi,t−d , i = 1, . . . , N, and d = 1, . . . , D,
new COVID-19 cases Yit from country i at time t are assumed to follow a
negative binomial distribution with mean µit and overdispersion parameter
ψ as

[Yit |Yt−1, . . . , Yt−D]∼NegBin(µit ,ψ).

The conditional variance is µit +ψµ2
it , which demonstrates the role of the

overdispersion parameter to capture variability greater than the mean. The
conditional mean µit is decomposed into three additive components,

µit = εi +λit

D∑
d=1

udYi,t−d +φit

D∑
d=1

∑
j 6=i

udwjiYj,t−d , [1]

where εi , λit , and φit represent three contributions to case incidence. The
first term, εit , is the so-called endemic component and captures infections
arising from sources other than past observed cases (e.g., contributions from
areas that are not included in the neighbor set). The two other terms in [1],
λit and φit , constitute the epidemic part of the model and modulate how
infective individuals reported in the past d days both locally and from neigh-
boring countries will contribute to the average future number of reported
cases. The strength of connection between countries is described by spatial
weights wji . This intercountry transmission susceptibility is defined using a
power-law formulation proposed by Meyer and Held (66),

wji = o−ρ
ji , [2]

where oji is the path distance between countries j and i (with oii = 0, oji =

1 for direct neighbors i and j and so on), and ρ is a decay parameter to
be estimated from the data. The path distance oji is on an ordinal scale
based upon the adjacency index. The spatial weights are normalized such
that

∑
k wjk = 1 for all rows j of the weight matrix (SI Appendix, Fig. S17).

The normalized autoregressive weights ud are shared between the local
and global epidemic components, and represent the probability for a serial
interval of up to D days—which is the average time in days between
symptom onset in an infectious individual (or primary case) and symptoms
appearing in a newly infected individual (or secondary case) when both are
in close contact (67).

The parameters εit , λit , and φit are constrained to be nonnegative and
modeled as the natural log-transformed linear combination of different
country-specific covariates. The endemic component,

log(εit) =α
(ε)

+ log(Ni), [3]

is decomposed as a constant α(ε) specific to the baseline endemic and a term
proportional to the country-level population Ni . In the epidemic part of the
model, we expect new cases to also be driven by country-specific factors:
Population (Ni), HDI classifications of low, medium, or high (HDIi = {0, 1, 2}),
and land-locked (LLi) status for each country are assumed constant over the
time scale of analysis. Other forces driving new cases vary over time, as a
response to either policy changes or natural fluctuation in environmental
or societal patterns. Time-dependent covariates include mean daily tem-
perature (Ti,t−τ ), rainfall (Ri,t−τ ), specific humidity (Hi,t−τ ), testing policy
(Xi,t−τ ), and government stringency index (Si,t−τ ), lagged at τ days. The
full set of explanatory variables that contribute to the model from both
internal and external epidemic components are formalized in [4] and [5] as

log(λit) =α
(λ)
i + β

(λ) log(Ni) + γ
(λ)HDIi + δ

(λ)LLi +

σ
(λ)Si,t−τ +χ

(λ)Xi,t−τ +

θ
(λ)Ti,t−τ +ω

(λ)Ri,t−τ + ν
(λ)Hi,t−τ [4]

and

log(φit) =α
(φ)
i + β

(φ) log(Ni) + γ
(φ)HDIi + δ

(φ)LLi +

σ
(φ)Si,t−τ +χ

(φ)Xi,t−τ , [5]

where α(λ)
i ≈N(α(λ)

0 ,σ2
λ) and α(φ)

i ≈N(α(φ)
0 ,σ2

φ) are a set of independent
country-level random effects. This modeling framework is implemented in
the R package “surveillance” (68). A complete table of data sources for
model input is found in SI Appendix, Table S3.
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Model Fitting. We selected models based on AIC (69) if random effects were
not present (SI Appendix, Table S1). To compare models that included ran-
dom effects, we used proper scoring rules for count data (70). Scoring rules
are functions S(P, y) that evaluate the accuracy of a predictive distribution
P against an outcome y that was observed. We chose the model with the
lowest AIC or with the lowest logarithmic score computed as minus the log-
arithm of the predictive distribution evaluated at the observed count. We
began with the first-order autoregressive modeling (D= 1 in [1]) of daily
COVID-19 incidence using intercept-only model population offset and coun-
try connectivity. In a mechanistic interpretation of such a first-order model,
the time between the appearance of symptoms in successive generations
is assumed to be fixed to the observation interval at which the data are
collected, here as 1 d (52).

After the estimation and illustration of this basic model, we expand
the model by sequentially adding the following additional covariates:
country-specific HDI, population both within country and in neighboring
countries, meteorology factors, stringency index, testing policy, landlocked
status, and random effects to more fully account for unobserved het-
erogeneity of the cases. Social policies and meteorological data were
included in the model, testing for fit at different lags (for example,
Ti,t−τ , τ ∈ 0, 7, 14 d).

Model Predictions. As in previous work by Held and Meyer (71), we use
plug-in forecasts: forecast from the fitted model without carrying forward
the uncertainty in the parameter estimates. We assess both the model fit
and 1-wk-ahead forecast of the higher-order autoregressive model with
the logarithmic score. The smaller the score, the better the predictive
quality (72, 73). Mean scores were generated for each country’s fore-
cast, by averaging the log-score obtained for each day of the validation
week.

Data Availability. All code and data are available, to both replicate the
results in this paper and enable users to examine past and future time
windows of interest, in SI Appendix and posted online at GitHub, https://
github.com/Schiff-Lab/COVID19-HHH4-Africa.
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